书城童书孩子一定要掌握的99个学习秘诀
279900000006

第6章 巧解妙算,让数学锦上添花(2)

第二章巧解妙算,让数学锦上添花 (2)

答案:井水没有鱼,萤火没有烟,枯树没有叶,雪花没有枝。

背熟常用数据,让你算得更快更准

上帝是一位算术家。

——雅克比

常用的几个数的最小公倍数

2和3的最小公倍数是6。

2、3和5的最小公倍数是30。

2、4和5的最小公倍数是20。

3、4和5的最小公倍数是60。

3、4和6的最小公倍数是12。

8和6的最小公倍数是24。

3和4的最小公倍数是12。

4、5和15的最小公倍数是60。

4、5和8的最小公倍数是40。

4、6和8的最小公倍数是24。

2、3和8的最小公倍数是24。

3、4和5的最小公倍数是60。

4、6和9的最小公倍数是36。

6.分母是16的真分数化为小数的数据

【数字乐园】

魔术师上台表演了。他手里拿着10只方盒,对观众说:“这里有1000个玻璃球,分放在10个盒子里。你们只要告诉我一个数字,我不用打开盒子,不用数,马上就能照你说的数字把玻璃球拿出来。”一位观众当即报出:“拿181个吧!”魔术师马上拿出5只盒子,一数正是181个。观众们众说纷纭,猜不透其中的奥妙。最后还是数学老师王老师说:“这很简单,只不过应用了一个数学道理罢了。”你明白其中的奥妙吗?

答案:魔术师把1000个玻璃球按1、2、4、8、16、32、64、128、256、489的数量分别装进10只盒子里,这样不用打开盒子便可以构成1~1000之间的任意个玻璃球数。181=128+32+16+4+1,所以魔术师拿出分别装有128、32、16、4、1个玻璃球的5只盒子即可。

“加法算式”用“眼”看出得数

数是统治着整个量的世界,而算数的四则运算则是数学家的全部装备。

——麦克斯韦

有些孩子形成了依赖用笔的习惯,不进行笔算他就觉得没有把握是不是对,这样学习效率太低了,到了初中、高中将会不堪重负。其实好多算术题可以用“眼”看出得数的,下面我们一起来看一下这种算法。

1余差法的巧妙运用

进行加法巧算时,可以先把接近整十、整百、整千等的数看成整十、整百、整千的数,再根据“多加的零头数要减去,少加的零头数再加上”的原则进行处理。我们通常把这里的“零头数”叫做“余差”。

▲王牌例题

a298+56

计算过程:298接近于300,298+56可以看成300+56,多加了2,所以最后还要减2。即(300+56)-2=354。

b364+103

计算过程:103接近于100,364+103可以看成364+100,少加了3,所以最后还要加3,即(364+100)+3=367。

▲实战演习

a399+78b38+98c297+72

d9999+999+99+9

▲参考答案

a477b136c369d11106

2换位置找最契合的朋友

根据加法结合律,几个数相加,其中若有能够凑整的,可以变更原式,使能凑整的数结成一对好朋友,将它们先计算。

▲王牌例题

a1674+756+326

计算过程:1674与326可凑整,所以先计算它们,再加756。即1674+326+756=2756。

b374+178+026

计算过程:374与026可以凑整,所以先计算它们,再加17.8。即3.74+0.26+178=21.8。

▲实战演习

a135+627+375+665+173

b268+55+56+44+32

▲参考答案

1.19752.123.6574.455

3恒等式变形巧点用

在做加法时,常常用这样一种恒等变形:一个加数增加一个数,另一个加数同时减少同一个数,它们的和不变。

▲王牌例题

a1651+99

b10.58+0.65

计算过程:原式=(10.58-0.35)+(0.65+0.35)=10.23+1=11.23

▲实战演习

a2582+198

b67.86+9.98

c395+3458

▲参考答案

a2780b7784c3853

4 “找准基数”更便捷

当有许多大小不同而又比较接近的数相加时,可选其中的一个数(最好是整十、整百、整千等)作为基数,再找出每个加数与基数的差。大于基数的差作为加数,小于基数的差作为减数,把这些差累计起来,再加上基数与加数个数的乘积就可得到答案。

▲王牌例题

a82+83+79+78+80+76+77+81

计算过程:先将这些数全都看成80,就是8个80,然后再将原来的每个数都与80相比,比80大的,多几就再加几,比80小的,少几就再减几。

b12+11+09+13+08

计算过程:先将这几个数全都看成1,就是5个1,然后再将原来的每个数与1相比,比1大的,多几就再加几,比1小的,少几就再减几。

▲实战演习

a33+31+29+28+32

b0.5+0.51+0.52+0.49

▲参考答案

a53b202

5逆序数相加,这样算更简单

一个数的各位数字的倒序组成的数,叫做这个数的逆序数。计算它们的和,可以采用特殊的方法。

第一种情况:任何一个个位数不为0的两位数与它的逆序数的和,是这个数数字和的11倍。

第二种情况:一个三位数,如果它各数位间的差相等(不超过4),那么,这个数与它逆序数的和,就等于它百位数字与个位数字的和的111倍。

▲王牌例题

a51+15

计算过程:(5+1)×11=66

b234+432

计算过程:(2+4)×111=666

▲实战演习

a357+753

b35+53

c67+76

▲参考答案

a1110b88c143

6利用神奇中间项

当一串连续数的个数为奇数时,可以利用中间项求和,它们的和等于中间项乘以加数个数。注意:当连续数的个数是偶数时,仍然可以用这种办法,只不过把加式分为两部分就可以了。

▲王牌例题

a1+2+3+4+5+6+7

计算过程:中间项为4,加数个数为7,所以1+2+3+4+5+6+7的和为4×7=28。

b21+22+23+24+25+26+27

计算过程:中间项为24,加数个数为7,所以21+22+23+24+25+26+27的和为24×7=168。

▲实战演习

a11+12+13+14+15

b31+32+33+34+35+36

c1+2+3+4+…+99+100

▲参考答案

a65b201c5050

7同分子异分母相加可以脱口而出

同分子异分母相加不用通分即可得其答案的方法为:以两个分母的积作分母,以两个分母的和与分子的积作分子。注意:如果两个异分母的分数分子都是1,只要以分母的积作分母,分母的和作分子即可。

【数字乐园】

从前,有位牧羊老人养了17只山羊。他临终时将3个儿子叫到床前,留下遗嘱:“大儿子分二分之一,二儿子分三分之一,小儿子分九分之一。但是,不能将羊宰杀。”说完,老人就去世了。这可难倒了三兄弟。邻居张大伯得知了这个消息,主动为三兄弟解此难题,帮助他们分好了羊。请你猜猜看,张大伯是用什么办法分好的?

答案:张大伯牵来了自己的一只羊,这样共计18只羊。大儿子:18×1/2=9(只)。二儿子:18×1/3=6(只)。三儿子:18×1/9=2(只)。9+6+2=17(只)。三个儿子分的羊共计17只,分完后多了一只,正好还给张大伯。

巧妙算出“减法算式”的得数

我们这个世界可以由音乐的音符组成,也可由数学的公式组成。

——爱因斯坦

一般情况下,两个数相减并不难。如果数字适宜,凑整后再减,就更容易。减法运算不一定要按“套路”出牌,掌握一些减法小技巧,就能保证减法巧算不失误,节省大量时间,使学习效率更上一层楼。

1互补数相减有绝招

两个数之和为满数(如10、100、1000等),这两个数叫互为补数。

两个互为补数的数相减,只要将大数自加再减满数便得其差。

▲王牌例题

a63-37

计算:因为63+37=100,所以63与37为互补数。因此只要将63+63,再减去满数100,即可得出得数:63+63-100=26。

b651-349

计算:因为651+349=1000,所以651与349为互补数,因此只要将651+651,再减去满数1000,即可算出得数:651+651-1000=302。

▲实战演习

a851-149

b75-25

c73-27

▲参考答案

a702b 5c46

2两数相反,就用以乘代减法

有这样一种两位数相减,相减的两位数的个位和十位数字恰好相反。对于这种减法,可以用被减数的十位数字减去个位数字的差乘以9就行了。

▲王牌例题

a83-38

计算过程:(8-3)×9=45

b87-78

计算过程:(8-7)×9=9

3凑整求差一样简单

整十、整百、整千相加减,算起来都比较容易。在减法计算时,减数若有可以凑整的条件,先凑整,再算其他,能使计算简便。

▲王牌例题

a867-143-078-157-022

计算过程:在减数中,143与157可以凑成3;078与022可以凑成1。先凑整,再减比较容易计算。

=867-(143+157)-(078+022)

=867-3-1

=467

b729-203

计算过程:用凑整法先把203看做200计算后,再减去少减的3。

=729-200-3

=529-3

=526

▲实战演习

a2543-998

b578-(234-122)

c357-199

▲参考答案

a1545b466c158

4同尾先减你做到了吗

在减法计算时,若减数和被减数的尾数相同,先用被减数减相同尾数的减数,能使计算更简便。

▲王牌例题

a3568-(178+568)

计算过程:原式=3568-568-178

=3000-178

=2822

b6.73-(0.73-0.65)

计算过程:原式=6.73-0.73+0.65

=6+0.65

=6.65

▲实战演习

a652-(52+378)

b3.07-(0.07-50)

c3.87-(2.6+0.87)

▲参考答案

a222b53c04

5凑同求差简便易行