书城童书物质循环(自然瞭望书坊)
2584600000011

第11章 21世纪的“新黄金”(2)

然而,天然气水合物在给人类带来新的能源前景的同时,对人类生存环境也提出了严峻的挑战。天然气水合物中的甲烷,其温室效应为二氧化碳的20倍,温室效应造成的异常气候和海面上升正威胁着人类的生存。开采不当,后果绝对是灾难性的。另外,陆缘海边的可燃冰开采起来十分困难,一旦出了井喷事故,就会造成海啸、海底滑坡、海水毒化等灾害。所以,可燃冰的开发利用就像一柄“双刃剑”,需要小心对待。

知识小百科

南海可燃冰

2007年6月5日,我国海域天然气水合物(俗称可燃冰)资源调查获得重大突破。国土资源部、中国地质调查局相关负责人宣布,6月1日,在我国南海北部成功钻获天然气水合物实物样品,并经初步预测,其远景资源量可达上百亿吨油当量。这不但为我固未来可替代能源提供了有力的资源保障,而且还可能影响到未来世界能源的利用格局。

南海可燃冰的发现标志着我国天然气水合物的调查研究水平一举步入世界先进行列。发现地南海神狐海域成为世界上第24个采到天然气水合物实物样品的地区,是第22个在海底采到天然气水合物实物样品的地区,是第12个通过钻探工程在海底采到水合物实物样品的地区。我国也因此成为继美国、日本、印度之后第4个通过国家级研发计划采到水合物实物样品的国家,是在南海海域首次获取天然气水合物实物样品的国家。

充满希望的新能源——生物能源

生物能源又称绿色能源,是指从生物质得到的能源。它是人类最早利用的能源,也一直是人类赖以生存的重要能源。古人钻木取火、伐薪烧炭,实际上就是在使用生物能源。

“万物生长靠太阳”,生物能源是从太阳能转化而来的,只要太阳不熄灭,生物能源就取之不尽。生物能源的转化过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能源的使用过程又生成二氧化碳和水,形成一个物质的循环,理论上二氧化碳的净排放为零。生物能源是一种可再生的清洁能源。利用高技术手段开发生物能源,已成为当今世界发达国家能源战略的重要部分。

21世纪是生物的世纪,是科学技术飞速发展的新世纪,而可持续发展是当前经济发展的趋势所在。面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光。生物能源作为可再生、污染极小的能源,具有无可比拟的优越性,必将为21世纪的经济发展和环境保护注入强大的推动力。

当前,生物能源的主要形式有四种:沼气、生物制氢、生物柴油和燃料乙醇。

(1)生物能源——沼气

沼气是一种可燃气体,由于这种气体最早是在沼泽、池塘中发现的,所以人们称它“沼气”。我们通常所说的沼气,并不是天然产生的,而是人工制取的,所以它属于二次能源。沼气对于目前我国广大农村来说,是一种比较理想的家庭燃料。它可以用来煮饭、照明,既方便,又干净,还可节约大量柴草。

沼气多为就地制取、就地使用的能源,不需要远距离运输和传送,减轻了运输负担,也减轻了农民的经济负担。

沼气不仅是一种干净的能源,而且在工业生产上可作为化工原料使用。沼气的主要成分是甲烷,这种气体在高温下能分解成碳和氢,因此,沼气可用来制造氢气和炭黑,并能进一步制造乙炔、合成汽油、酒精、塑料、人造纤维和人造皮革等各种化工产品,用途日益广泛。

知识小百科

沼气的发现与沼气发酵的发展

沼气是由意大利物理学家A.沃尔塔于1776年在沼泽地发现的。1916年,俄国人B.Ⅱ.奥梅良斯基分离出第一株甲烷茵,但不是纯种。1980年,中国首次分离甲烷八叠球菌成功。目前世界上已分离出的甲烷菌种近20株。

世界上第一个沼气发生器(又称自动净化器)是由法国L.穆拉于1860年将简易沉淀池改进而成的。1925年在德国、1926年在美国,分别建造了备有加热设施及集气装置的消化池,这是现代大、中型沼气发生装置的原型。第二次世界大战后,沼气发酵技术曾在西欧一些国家得到发展,但由于廉价的石油大量涌入市场而受到影响。后随着世界性能源危机的出现,沼气又重新引起人们重视。1955年新的沼气发酵工艺流程——高速率厌氧消化工艺产生。它突破了传统的工艺流程,使单位池容积产气量(即产气率)在中温下由每天1立方米容积产生07~15立方米沼气,提高到4~8立方米沼气,滞留时间由15天或更长的时间缩短到几天甚至几个小时。

20世纪20年代初期,罗国瑞在广东省潮梅地区建成第一个沼气池,随之成立了中华国瑞瓦斯总行,以推广沼气技术。目前中国农村户用沼气池的数量达1300万座。而高速率厌氧消化工艺生产性试验装置已在糖厂和酒厂正常运行。

(2)绿色能源——生物柴油

生物柴油是生物质能的一种,是清洁的可再生能源。它以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料。

生物柴油是一种优质清洁柴油,可从各种生物质提炼,因此可以说是取之不尽,用之不竭的能源,在资源日益枯竭的今天,有望取代石油成为替代燃料。生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。

(3)巴西打造生物能源大国——生物燃料

现今全世界都在进行生物能源的开发,但是最成功的例子就是巴西。巴西可再生能源占全国能源的比例高达447%,而全球平均仅为133%。巴西的可再生能源主要是乙醇和水力发电,其中乙醇的比重日益提高。

巴西利用甘蔗发酵生产酒精,因为甘蔗的含糖量高,所以酒精的产量也很高。巴西的法律规定,汽车的燃料中必须加入10%~25%的酒精作为燃料。而且在上个世纪,巴西就发明了乙醇汽车,是以纯酒精作为燃烧动力,这样不仅使他们国家的石油进口量减少,而且环境也得到很大的改善。不仅如此,酒精的大面积生产带给巴西的经济效益也是巨大的。巴西成功的例子是世界上发展生物能源学习的模范。

(4)世纪的理想能源——氢能

氢气是高效、清洁、可再生的能源,在全球能源系统的可持续发展中将起到显着作用,并将对全球生态环境产生巨大的影响。采用氢能源是当前世界公认的可代替石油能源的主要出路之一。氢本身是可再生的,在燃烧时只生成水,不产生任何污染物,甚至也不产生二氧化碳,可以实现真正的“零排放”。此外,氢与其他含能物质相比,还具有一系列突出的优点。首先是氢的能量密度高,是普通汽油的268倍:用于贮电时,其技术经济性能目前已有可能超过其他各类贮电技术;将氢转换为动力,热效率比常规化石燃料高30%~60%。如作为燃料电池的燃料,效率可高出1倍,氢适于管道运输,可以和天然气输送系统共用。在各种能源中,氢的输送成本最低,损失最小,优于输电:氢与燃料电池相结合可提供一种高效、清洁、无传动部件、无噪声的发电技术。小型的低温固体离子交换膜燃料电池可用在汽车和火车机车上:氢也能直接作为发动机的燃料,因此国际上一些着名的汽车公司已经开始大力开发电动汽车产品。

早在1965年,外国的科学家们就已设计出了能在马路上行驶的氢能汽车。中国也在1980年成功地造出了第一辆氢能汽车。氢能汽车行车路远,使用的寿命长,最大的优点是不污染环境。近年来,国际上以氢为燃料的“燃料电池发动机”技术取得重大突破,而“燃料电池汽车”已成为推动“氢经济”的发动机。因此氢能汽车具有广阔的应用前景。

知识小百科

氢能汽车真的环保吗?

一般人认为,以氢燃料为动力的汽车只会产生水,事实也的确是这样,那为什么说氢燃料汽车并不环保呢?环球能源网认为,必须从其生产原料上来分析,由于技术水平并不先进,以及考虑到成本等的问题,世界上很多国家的氢燃料的生产并不是以水为原料,而是以天然气作为生产原料,先前讲到了,如果要电解水取得氢气,那需要很大的能量消耗,而且要生产出能量值与普通汽油燃料相当的氢燃料,我们就需要大量的水资源,水同样也是我们这个星球稀缺的资源,因为我们这里讲到的水是淡水,而不是海水。而天然气的贮存方式相对成熟得多,而且我们可以用并不算多的天然气生产出能量值与普通汽油燃料相当的氢燃料。因此,作为氢燃料生产商来说,为了降低生产成本,他们宁愿选择天然气。问题就出在这里,天然气也属于化石能源的范畴,那么使用它就必定会产生大量的二氧化碳,从这个层面上来讲,我们的氢能汽车并不环保。

除了从节能和环保的角度来分析氢能汽车的未来,还应该从经济层面来审视一下其发展现状。如今我们很多的加油站都是以提供化石燃料为主,而没有单独提供氢能燃料的场所,如果我们要利用起加油站,那么就必须修建大量的输送管道,而且这样做的前提是,氢能汽车的数量一定要达到一个合适的规模,数量过少的话,那修建输送管道的成本就显得有点高了。而如今,我们只能从一些新能源展会上才能看到氢燃料电池汽车的身影,大街上主要行驶的还是普通汽油驱动的汽车,即便是在巴西这样的新能源汽车大国,其80%以上的汽车使用的也是乙醇,而非氢燃料电池。因此在可以预见的将来,我们还很难将氢燃料电池汽车推广出去,至少在工艺上还不过关。

魔鬼与天使——核能

核能是人类历史上的一项伟大发明。在1945年之前,人类在能源利用领域只涉及物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。

核能是人类最具希望的未来能源。目前人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,已得到实际性的应用;而轻元素聚变技术,也正在积极研制之中。

不论是重元素铀,还是轻元素氘、氚,在海洋中都有相当巨大的储藏量。以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。

核能发电是利用核反应堆中核裂变所释放出的热能进行发电的方式,它与火力发电极其相似,其奥妙主要在于核反应堆。与火电厂相比,核电站是非常清洁的,不排放有害物质也不会造成“温室效应”,因此能大大改善环境质量,保护人类赖以生存的生态环境。

但是,在核工业生产和科研过程中,会产生一些不同程度的放射性物质,这些物质的含量虽然很低,危害却很大,如果在事故中释放到外界环境,会对生态及民众造成伤害,必须慎重处理。几乎所有的国家,包括技术和管理最先进的国家,都不能保证核电站的绝对安全,前苏联的切尔诺贝利事故和美国的三里岛事故影响都非常大,日本也出现过核泄漏事故。核电站还是战争或恐怖主义袭击的主要目标,遭到袭击后可能会产生严重的后果,所以目前发达国家都在缓建核电站。

我国最早的核电站是坐落于海盐县秦山双龙岗的秦山核电站,它面临杭州湾,背靠秦山。秦山核电站附近不仅风景如画、水源充沛、交通便利,还靠近华东电网枢纽,是建设核电站的理想之地。它是我国第一座自己研究、设计和建造的核电站,1984年破土动工,1991年12月15日并网发电,设计寿命30年。厂区主要包括七个部分:核心部分、废物处理、供排水、动力供应、检修、仓库、厂前区等。秦山核电站设计广泛采用了国外现行压水堆核电站较成熟的技术,并进行了相当规模的科研和试验工作,始终把安全放在首位。为防止放射性物质外泄,设置了三道屏障,第一道结合金管把燃料蕊块密封组成燃料元件棒;第二道为高强度压力容器和封闭的回路系统;第三道屏障则为密封的安全壳,防止放射性物质外泄。此外,还有安全保护系统、安全壳空气净化和冷却系统、应急柴油发现机组等,使反应堆发生事故时,能自动停闭和自动冷却堆蕊。秦山核电站的建成结束了中国大陆无核电的历史,机组运营状态一直处于良好状态,是我国自力更生和平利用核能的典范。经过二、三期工程的建设,秦山核电站已经成为总装机容量300万千瓦的中国核电基地。